Electricity – Innovative Technologies towards Sustainable Development

‘Learning-by-Notes’ Package for Senior School - Physics

Lesson 6: Steam

How Do We Make Electricity from Steam?

Teaching Sustainability in High Schools: Subject Supplement

Developed by:

[The Natural Edge Project](http://www.thenaturaledgeproject.org)

[Griffith University](http://www.griffith.edu.au)

Funded by:

[PORT of BRISBANE](http://www.portofbrisbane.com)

As part of the: [Sustainable Living Challenge](http://www.sustainablelivingchallenge.com)
© The Natural Edge Project ('TNEP') 2008

The material contained in this document is released under a Creative Commons Attribution 3.0 License. According to the License, this document may be copied, distributed, transmitted and adapted by others, providing the work is properly attributed as: ‘Desha, C., Hargroves, S., Smith, M., Stasinopoulos, P. (2008) ‘Sustainability Education for High Schools: Year 10-12 Subject Supplements. Module 2: Electricity – Innovative Technologies towards Sustainable Development’. The Natural Edge Project (TNEP), Australia.’ This document is freely available electronically.

Disclaimer

While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the parties involved in the development of this document do not accept responsibility for the accuracy or completeness of the contents. Information, recommendations and opinions expressed herein are not intended to address the specific circumstances of any particular individual or entity and should not be relied upon for personal, legal, financial or other decisions. The user must make its own assessment of the suitability for its use of the information or material contained herein. To the extent permitted by law, the parties involved in the development of this document exclude all liability to any other party for expenses, losses, damages and costs (whether losses were foreseen, foreseeable, known or otherwise) arising directly or indirectly from using this document.

Acknowledgements

The development of the ‘Sustainability Education for High Schools: Year 10-12 Subject Supplements’ has been supported by a grant from the Port of Brisbane Corporation as part of the Sustainable Living Challenge. The Port of Brisbane Corporation is a Government Owned Corporation responsible for the operation and management of Australia’s third busiest container port. Its vision is, ‘To be Australia’s leading port: here for the future’. Sustainability for the Port of Brisbane Corporation means making economic progress, protecting the environment and being socially responsible. In response to the recent drought, and the wider global debate on climate change, the Port is committed to working with the port community to showcase the Port of Brisbane as a sustainable business precinct. Initiatives aimed at reducing the Port of Brisbane’s ecological footprint include energy efficiency, a green corporate fleet and constructing green buildings.

The development of this publication has been supported by the contribution of non-staff related on-costs and administrative support by the Centre for Environment and Systems Research (CESR) at Griffith University; and the Fenner School of Environment and Society at the Australian National University. The material has been researched and developed by the team from The Natural Edge Project. Versions of the material have been peer reviewed by Cameron Mackenzie, Queensland Department of Education, and Ben Roche, National Manager, Sustainable Living Challenge, University of New South Wales.

Project Leader: Mr Karlson ‘Charlie’ Hargroves, TNEP Director
Principal Researcher: Ms Cheryl Desha, TNEP Education Director
TNEP Researchers: Mr Michael Smith, Mr Peter Stasinopoulos
Copy-Editor: Mrs Stacey Hargroves, TNEP Editor

The Natural Edge Project

The Natural Edge Project (TNEP) is an independent non-profit Sustainability Think-Tank based in Australia. TNEP operates as a partnership for education, research and policy development on innovation for sustainable development. TNEP’s mission is to contribute to, and succinctly communicate, leading research, case studies, tools, policies and strategies for achieving sustainable development across government, business and civil society. Driven by a team of early career Australians, the Project receives mentoring and support from a range of experts and leading organisations in Australia and internationally, through a generational exchange model. TNEP’s initiatives are not-for-profit. Our main activities involve research, creating training and education material and producing publications. These projects are supported by grants, sponsorship (both in-kind and financial) and donations. Other activities involve delivering short courses, workshops, and working with our consulting associates as we seek to test and improve the material and to supplement the funds required to run the project. All support and revenue raised is invested directly into existing project work and the development of future initiatives.

Enquiries should be directed to: Mr Karlson ‘Charlie’ Hargroves, Co-Founder and Director, The Natural Edge Project charlie@naturaledgeproject.net www.naturaledgeproject.net

Prepared by The Natural Edge Project 2008 Page 2 of 17
Lesson 6: Steam

How Do We Make Electricity from Steam?

According to an estimate by the Centre for International Economics, Australia has enough geothermal energy to contribute electricity for 450 years.

Sydney Morning Herald, April 2007

Educational Aim

The aim of this lesson is to describe the key components of steam turbines and electric generators, and the processes used by these technologies to generate electricity from steam.

Key Words for Searching Online

Steam turbines, nozzle blade, rotor blade, nozzles, impulse turbine, reaction turbine, electric generators, electromagnetic induction, alternator

Key Learning Points

1. Making electricity from steam is generally a three step process, involving:
 1) Converting water to high pressure steam
 2) Using the high pressure steam in a steam turbine to rotate the turbine shaft
 3) Using the rotating turbine shaft in an electric generator to generate electricity

 In most cases, the used steam is converted back to water and returned to the source.

2. Water is converted to high pressure steam using either the heat from burning fuels, geothermal energy or the heat from atomic fission.

3. Steam turbines convert high pressure steam to mechanical rotation in a process which involves steam at high-pressure (high pressure potential energy) and with some velocity (some linear kinetic energy) entering the turbine and being sucked through sets of different turbine blades, eventually exiting at (normal) atmospheric pressure. During this process:

 1) The steam first encounters a set of stationary blades, called nozzles, that guide the steam towards the next set of blades.
 2) The steam then encounters a set of moving blades, called rotor blades, which are connected to the turbine shaft. When the rotor blades move, the turbine shaft rotates (rotational kinetic energy).

 Thus the steam turbines convert the combined input pressure potential energy and linear kinetic energy of steam to output rotational kinetic energy of the turbine shaft.

4. Each pair of nozzles and rotor blades is called a stage. Some turbines use multiple stages in succession to convert as much steam energy into shaft energy as is economical.

2 Geothermal energy involves finding vast blocks of ‘hot rocks’ with fracture systems that could generate electricity through water being injected, circulated through the fractures, and being returned to the surface as steam.
5. The energy conversion as the steam flows through the blades depends on whether the turbine is an *impulse* turbine or a *reaction* turbine. The difference between these two types of turbines lies in their blade configurations:

1) In an *impulse* turbine, the force that moves the blades is a result of the steam striking the blades. This force is known as an *impulse*. As the steam passes through the nozzle, all of its pressure potential energy is converted to linear kinetic energy. Then as the steam passes through the rotor blades, all of its linear kinetic energy is converted to rotational kinetic energy.

2) In a *reaction* turbine, the force that moves the blades is a result of the blades changing the direction of the steam’s flow. This force is known as a *reaction force*. As the steam passes through the nozzle, some of its pressure potential energy is converted to linear kinetic energy. Then as the steam passes through the rotor blades, all of its remaining pressure potential energy and all of its linear kinetic energy is converted to rotational kinetic energy.

6. An electric generator is a device that converts the rotating turbine shaft’s *kinetic energy* into *electricity*, or an electric current. The electricity then generates a voltage across an *electrical load*.

7. An electric generator works under the principle of *electromagnetic induction*, which means that if an electrical conductor, such as a wire, is moved through a magnetic field, then an electric current will be generated in the conductor.

8. The principle of electromagnetic induction is applied in an alternating current (AC) electric generator, or alternator.
Brief Background Information

Making electricity from steam is generally a three step process, where water is converted to high pressure steam, then the high pressure steam is converted to mechanical rotation of a turbine shaft, and the rotating turbine shaft then drives an electric generator.

Step 1: Water to Steam

In steam electric power plants, water is usually converted to high pressure steam using one of the following options:

- **A boiler**, which creates heat energy by burning fuels such as coal, oil, natural gas, wood or municipal waste as shown in Figure 6.1.3

- **Geothermal energy**, which is the heat energy in the ground near the Earth’s core, as shown in Figure 6.2. Geothermal energy exploration involves finding blocks of underground radioactive ‘hot rocks’ which contain fractures through which water can pass. The proposition is that these support electricity generation by water being injected, circulated through the fractures, and then returned to surface as steam. South Australia has been described as ‘Australia’s hot rock haven’. According to an estimate by the Centre for International Economics, Australia has enough geothermal energy to contribute electricity for 450 years.4 A geothermal power plant is already generating 80 kW of electricity at Birdsville, in southwest Queensland.5

- **Atomic fission**, which creates heat energy by splitting large atoms in to smaller atoms (see Figure 6.3).6

Fundamentals

The pressure of a gas in an enclosure varies with temperature (if the volume remains the same):

- pressure \propto temperature

The heat energy is absorbed by the gas particles, which then become more active and thus have more frequent and forceful collisions with each other and the enclosure’s walls. These collisions cause pressure.

Figure 6.1. A steam electric power plant powered by a boiler

Source: TXU Energy

Figure 6.2. A steam electric power plant powered by geothermal energy

Source: US Department of Energy

Figure 6.3. A steam electric power plant powered by nuclear fission

Source: Clean and Safe Energy Coalition

2. Convert High Pressure Steam to Mechanical Rotation

Steam Turbines convert high pressure steam to mechanical rotation. Their power output can range from 0.5 megawatts to over 1300 megawatts. Steam turbines convert 10-40 percent of the combined input *pressure* and *linear kinetic energy* of steam to output *rotational kinetic energy* of the turbine shaft in the following process:

- High-pressure steam (high pressure potential energy) and with some velocity (linear kinetic energy) enters the turbine and is sucked through sets of different turbine blades, exiting at atmospheric pressure.

- The steam first encounters a set of stationary blades, which are also converging nozzles, that guide the steam towards the next set of blades.

- The steam then encounters a set of moving blades, called rotor blades, which are connected to the turbine shaft such that when the rotor blades move, the turbine shaft rotates (rotational kinetic energy).

- Each pair of nozzles and rotor blades is called a stage. Some turbines use multiple stages in succession to convert as much steam energy into shaft energy as is economical. The energy conversion as the steam flows through the blades depends on whether the turbine is an *impulse* turbine or a *reaction* turbine. The difference between these two types of turbines lies in their blade configurations. Each blade configuration uses a different type of primary force (impulse or reaction) to move the rotor blades, but also uses the other type of force (reaction or impulse) secondarily. The two can also be combined into an *impulse-reaction* configuration, relying heavily on both impulse and reaction.

Fundamentals

Kinetic energy is a form of energy in moving objects. Kinetic energy can be either *linear* or *rotational*:

- linear kinetic energy \(\propto \) linear velocity
- rotational kinetic energy \(\propto \) rotational velocity

Potential energy is a form of stored energy in objects that can be converted to kinetic energy. Potential energy results in gases that are between regions of different *pressure*:

- pressure potential energy \(\propto \) pressure difference between regions

Gases will move from small volumes at high pressure to large volumes at low pressure (if the temperatures of both regions are the same) in a process known as expansion.

The pressure of the air we breathe is called atmospheric pressure, and is relatively low.

forces to move the rotor blades.

Impulse Turbines

The energy conversion for an impulse turbine is shown in Figure 6.4. In the impulse blade configuration (see Figure 6.5(a) and Figure 6.5(b)), there is high pressure at the nozzle’s inlet, atmospheric pressure between the nozzle and rotor blade, and atmospheric pressure at the rotor blade’s outlet. A nozzle is usually at the outlet of a guiding tube and rotor blades are connected to the rotor, which is also connected to the turbine’s shaft. Since the nozzle’s inlet pressure is higher than its outlet pressure, the steam expands through the nozzle – most of the steam’s pressure potential energy is converted to linear kinetic energy. After flowing through the nozzle, steam then strikes the rotor blades and applies a force. This force results in an impulse on the rotor blades, transferring most of the steam’s linear kinetic energy to the rotor blades’ linear kinetic energy and hence the turbine shaft’s rotational kinetic energy.

Since a rotor blade’s inlet and outlet are both at atmospheric pressure, the steam does not expand and thus rotor blades are not designed to converge nor diverge (see Figure 6.5(c)). After flowing through the rotor blades, the steam is finally exhausted at low pressure and low velocity. A commonly recognised application of the impulse configuration is the Pelton wheel (see Figure 6.5(d)).

Fundamentals

A nozzle is a tube-like device that either converges or diverges. As a fluid flows through a nozzle, its linear velocity increases as the nozzle converges and decreases as the nozzle diverges. The increase/decrease in the fluid’s linear velocity, and hence its linear kinetic energy, is converted from/to its pressure potential energy:

\[
\text{linear velocity} \propto \frac{1}{\text{pressure}}
\]

Figure 6.4. Energy conversion in an impulse turbine.
Figure 6.5. (a) Single-nozzle impulse turbine; (b) four-nozzle impulse turbine; (c) impulse nozzle blade configuration; (d) Pelton wheel

Source: (a) US Department of Energy;\(^{13}\) (b) Integrated Publishing (n.d.);\(^{14}\) (c) Adapted from Beardmore, R (2006)\(^{15}\) by TNEP; (d) Adapted from The Free Dictionary\(^{16}\) by TNEP

Reaction Turbines

The energy conversion for a reaction turbine is shown in Figure 6.6. In the reaction blade configuration (see Figure 6.7(a) and Figure 6.7(b)), there is high pressure at the nozzle’s inlet, moderate pressure between the nozzle and rotor blade, and atmospheric pressure at the rotor blade’s outlet. Nozzles are usually connected to the turbine’s casing and rotor blades are connected to the rotor, which is also connected to the turbine’s shaft. Since the nozzle’s inlet pressure is higher than its outlet pressure, the steam expands through the nozzle – some of the steam’s pressure potential energy is converted to linear kinetic energy. After flowing through the nozzle, steam then flows through the rotor blades, where it is forced to change direction. This force on the steam results in a reaction force on the rotor blades, transferring most of the steam’s pressure potential energy and linear kinetic energy to the rotor blades’ linear kinetic energy and hence the turbine shaft’s rotational kinetic energy.

Figure 6.6. Energy conversion in a reaction turbine

Figure 6.7. (a) Blades of a single-stage reaction turbine; (b) Blades of a two-stage reaction turbine; (c) reaction nozzle blade configuration; (d) Catherine wheel

Source: (a) & (b) Global Security (n.d.); (c) Adapted from Beardmore, R. (2006); (d) Adapted from The Free Dictionary.
Since a rotor blade’s inlet pressure is higher than its outlet pressure, the steam expands and thus rotor blades are designed as converging nozzles in the same shape as the nozzle blade (see Figure 6.7(c)). After flowing through the rotor blades, the steam is finally exhausted at low pressure and low velocity. A commonly recognised application of the impulse configuration is the Catherine wheel (see Figure 6.7(d)).

Impulse-Reaction Turbines

In the impulse-reaction blade configuration, the rotor blades are usually designed like an impulse blade at the root and like a reaction blade at the tip (see Figure 6.8).

![Figure 2.8. Impulse-reaction turbine blade](image)

Source: Global Security

Electric Generator

An electric generator is a device that converts kinetic energy into electricity, or an electric current. The electricity then generates a voltage across an electrical load. An electric generator works under the principle of electromagnetic induction, which means that if an electrical conductor, such as a wire, is moved through a magnetic field, then an electric current will be generated in the conductor.

Fundamentals

A positive electrical current (which is assumed in the right hand rule) flows from positive voltage to negative voltage. A negative electrical current flows from negative voltage to positive voltage.

The magnitude of the current in the wire is given by Equation 6.1 and Table 6.1; the direction of the current is given by the right hand rule (see Figure 6.9); and the magnitude of the voltage across the load is given by Equation 6.2 and Table 6.2.

20 The blade in the image is for an aircraft’s gas turbine rather than for a steam turbine, but the image serves to demonstrate the impulse-reaction blade configuration.

Table 6.1: Symbol Nomenclature for Equation 6.1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Electrical current generated in wire</td>
<td>Ampere (A)</td>
</tr>
<tr>
<td>F</td>
<td>Force acting on current-carrying wire</td>
<td>Newton (N)</td>
</tr>
<tr>
<td>B</td>
<td>Magnetic field strength acting on wire</td>
<td>Tesla (T)</td>
</tr>
<tr>
<td>l</td>
<td>Length of wire</td>
<td>metres (m)</td>
</tr>
<tr>
<td>θ</td>
<td>Angle between the force and magnetic field strength</td>
<td>Degree (°) or Radian (rad)</td>
</tr>
</tbody>
</table>

\[I = \frac{F}{BI \sin \theta} \]

Equation 6.1. Electric current generated in a conducting wire that is moved through a magnetic field

Figure 2.9. Right hand rule

Source: Adapted from Integrated Publishing

Table 6.2: Symbol Nomenclature for Equation 6.2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Voltage generated across load</td>
<td>Volts (V)</td>
</tr>
<tr>
<td>I</td>
<td>Electrical current generated in wire</td>
<td>Ampere (A)</td>
</tr>
<tr>
<td>Z</td>
<td>Electrical impedance of load</td>
<td>Ohm (Ω)</td>
</tr>
</tbody>
</table>

\[V = IZ \]

Equation 6.2. Voltage generated across an electrical load due to an electric current

AC Generator

The way the principle of electromagnetic induction is applied in a simple AC electric generator, or alternator, is shown in Table 6.3. The magnetic field, which acts from North to South, is provided by two magnets. The force to move the wire is provided by the rotating output shaft of...
the steam turbine or some other device. The general shape of the current graph and voltage graph are almost the same – the only difference is that one graph is usually stretched vertically compared to the other graph. One of the easiest ways to understand Table 6.3 is to step through each entry while:

1. using the right hand rule to match the directions of the magnetic field, force and electric current; and

2. considering how much of the force is acting perpendicular to the magnetic field.

Alternatively, see the online animations by Wolfe, J. (n.d.)\(^{23}\) and Wisconsin Valley Improvement Company.\(^{24}\) These resources also have animations for DC generators.

Most practical electric generators use several loops of wire in a coil, rather than just one loop of wire. Some electric generators rotate the magnets while holding the wire stationary.

Table 6.3: Operation of a simple AC electric generator

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Electric Current and Voltage</th>
<th>Comments</th>
</tr>
</thead>
</table>
| !Image | **Magnitude:** Zero
Sign: –
Trend: Increasing | None of the force is acting perpendicular to the magnetic field, so zero electric current is generated. |
| !Image | **Magnitude:** Moderate
Sign: Positive
Trend: Increasing | In the first half of the cycle, electric current flows from positive voltage to negative voltage, which is the positive direction, thus the voltage is positive. Some of the force is acting perpendicular to the magnetic field, so moderate electric current is generated. |
| !Image | **Magnitude:** Maximum
Sign: Positive
Trend: Turning point | All of the force is acting perpendicular to the magnetic field, so maximum electric current is generated. |
Table 6.3: Operation of a simple AC electric generator (Continued)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Electric Current and Voltage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Magnitude: Moderate</td>
<td>Some of the force is acting perpendicular to the magnetic field, so moderate electric current is generated.</td>
</tr>
<tr>
<td></td>
<td>Sign: Positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trend: Decreasing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnitude: Zero</td>
<td>None of the force is acting perpendicular to the magnetic field, so zero electric current is generated.</td>
</tr>
<tr>
<td></td>
<td>Sign: –</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trend: Decreasing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnitude: Moderate</td>
<td>In the second half of the cycle, electric current flows from negative voltage to positive voltage, which is the negative direction, thus the voltage is negative. Some of the force is acting perpendicular to the magnetic field, so moderate electric current is generated.</td>
</tr>
<tr>
<td></td>
<td>Sign: Negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trend: Decreasing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.3: Operation of a simple AC electric generator (Continued)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Electric Current and Voltage</th>
<th>Comments</th>
</tr>
</thead>
</table>
| ![Diagram 1](image1.png) | **Magnitude:** Maximum
Sign: Negative
Trend: Turning point
Voltage vs. Time graph | All of the force is acting perpendicular to the magnetic field, so maximum electric current is generated. |
| ![Diagram 2](image2.png) | **Magnitude:** Moderate
Sign: Negative
Trend: Increasing
Voltage vs. Time graph | Some of the force is acting perpendicular to the magnetic field, so moderate electric current is generated. |
| ![Diagram 3](image3.png) | **Magnitude:** Zero
Sign: –
Trend: Increasing
Voltage vs. Time graph | None of the force is acting perpendicular to the magnetic field, so zero electric current is generated. |

Source: Adapted from Wolfe, J. (n.d.)²⁵ by TNEP

Key References

